Abstract

Mechanical equipment is a significant contributor to carbon emissions. By analyzing the life cycle carbon emissions of mechanical equipment, it can be obtained that the consumption of materials and energy are the key factors. Focusing on decreasing material and energy consumption in the life cycle of mechanical equipment, a series of low carbon design strategies are proposed, including material selection, lightweight design, and design for disassembly and recycling; specifically, in this paper, low carbon operation strategies on the machine and workshop levels are discussed. Operations including power matching, energy recovery, and transmission chain shortening can be performed at the machine level, as well as scheduling and production optimization at the workshop level. The proposed method is applied to a piece of typical equipment, a hydraulic forming press, and results show that the proposed low carbon manufacturing methods have significant carbon emission reduction potential. Combined with current research hotspots, the integration of design methods and tools and the carbon emission reduction techniques enabled by intelligent manufacturing are future directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call