Abstract

We develop a mechanistic life-cycle model for endospore-forming bacteria (EFB) and test the model with experiments with a Bacillus mixed culture. The model integrates and quantifies how sporulation and germination are triggered by depletion or presence of a limiting substrate, while both substrates affect the rate of vegetative growth by a multiplicative model. Kinetic experiments show the accumulation of small spherical spores after the triggering substrate is depleted, substantially more rapid decay during sporulation than for normal decay of vegetative cells, and a higher specific substrate utilization rate for the germinating cells than that for growth of vegetative cells. Model simulations capture all of these experimental trends. According to model predictions, when a batch reactor is started, seeding with EFB spores instead of active EFB delays the onset of rapid chemical oxygen demand (COD) utilization and biomass growth, but the end points are the same. Simulated results with low aeration intensity show that germination can consume some substrate without dissolved oxygen (DO) depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.