Abstract

Summary Thermal insulation is a strategic product for reducing energy consumption and related greenhouse gas (GHG) emissions from the building sector. This study examines from a life cycle perspective the changes in GHG emissions resulting from the use of two rigid thermal insulation products manufactured and installed from 1971 to 2025. GHG emissions related to insulation production and fugitive releases of blowing agents are modeled and compared with GHG savings from reduced heating loads in North America, Europe, and Asia. Implementation of alternative blowing agents has greatly improved the carbon dioxide 100-year equivalent (CO2-eq) emission performance of thermal insulation. The net average CO2-eq savings to emissions ratio for current extruded polystyrene (XPS) and polyisocyanurate (PIR) insulation studied was 48:1, with a broad range from 3 to 1,800. Older insulation products manufactured with chlorofluorocarbons (CFCs) can result in net cumulative GHG emissions. Reduction of CO2-eq emissions from buildings is governed by complex interactions between insulation thickness and placement, climate, fuel type, and heating system efficiencies. A series of charts mapping both emissions payback and net savings demonstrate the interactions between these factors and provide a basis for specific policy recommendations to guide effective insulation investments and placement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.