Abstract

AbstractAluminum production is a major energy consumer and source of greenhouse gas (GHG) emissions. The regional transfer of the primary aluminum (PA) industry, which mainly consists of the processes of electrolysis and aluminum ingot casting, is currently an important international trend in aluminum industrial development. However, the changes in GHG emissions from aluminum production for such transfers are unclear. This study has established a life cycle assessment model of aluminum industry based on regional transfers in the context of China, determined the GHG emissions of PA and secondary aluminum (SA) production, examined the GHG emission changes of PA production based on regional industry transfer between the years 2007 and 2017, and explored seven driving factors that affect GHG emissions in the aluminum industry. GHG emissions per unit PA and SA production in China decreased by 18.6% and 6.3%, respectively, but the total GHG emissions from aluminum industry still increased by 2.2 times between the years 2007 and 2017. The driving factor analysis showed that the major positive effects of GHG emissions from China's aluminum industry from 2007 to 2017 included the production scale effect of SA and the energy structure effect. Existing regional transfers (between the years 2007 and 2017) did not deliver significant annual GHG emissions reductions. Currently, Xinjiang, Henan, Shandong, and Inner Mongolia are the main PA production provinces in China, although regional transfers have been implemented. This study provides a basis for the improvement and sustainable development of the aluminum industry, suggests policies for regional aluminum development, and proposes a beneficial layout of the aluminum industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call