Abstract

Titanium dioxide nanoparticle (TiO2-NP) exposure has raised significant concern due to their potential toxicity and adverse ecological impacts. Despite their ubiquitous presence in various environmental compartments, the long-term consequences of TiO2-NPs remain poorly understood. In this study, we combined data of in vivo toxicity and modeling to investigate the potential negative impacts of TiO2-NP exposure. We employed the nematode Caenorhabditis elegans, an environmental organism, to conduct a full life cycle TiO2-NP toxicity assays. Moreover, to assess the potential impact of TiO2-NP toxicity on population dynamics, we applied a stage-constructed matrix population model (MPM). Results showed that TiO2-NPs caused significant reductions in reproduction, survival, and growth of parental C. elegans (P0) at the examined concentrations. Moreover, these toxic effects were even more pronounced in the subsequent generation (F1) when exposed to TiO2-NPs. Furthermore, parental TiO2-NP exposure resulted in significant toxicity in non-exposed C. elegans progeny (TiO2-NPs free), adversely affecting their reproduction, survival, and growth. MPM analysis revealed decreased transition probabilities of surviving (Pi), growth (Gi), and fertility (Fi) in scenarios with TiO2-NP exposure. Additionally, the population growth rate (λmax) was found to be less than 1 in both P0 and F1, indicating a declining population trend after successive generations. Sensitivity analysis pinpointed L1 larvae as the most vulnerable stage, significantly contributing to the observed population decline in both P0 and F1 generations under TiO2-NP exposure. Our findings provide insight into the potential risk of an environmental organism like nematode by life cycle exposure to TiO2-NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.