Abstract

Forty-eight hours after fertilization, fathead minnow (Pimephales promelas) eggs were exposed to the synthetic estrogen 17alpha-ethinylestradiol (EE2) at nominal concentrations of 0.32 and 0.96 ng/L and measured concentrations of 3.5, 9.6, and 23 ng/L. The fish were observed through the larval, juvenile, and adult stages. Growth, secondary sex characteristics, the liver somatic index, the gonadosomatic index, and fecundity were examined after several lengths of exposure. No significant changes were seen in fry or juvenile growth from 8 to 30 days posthatch (dph). An increase in the ovipositor index (a female secondary sex characteristic) was the most sensitive early response at 60 dph and was seen in fish exposed to EE2 concentrations > or = 3.5 ng/L. Continuation of the EE2 exposure until 150 dph, through maturation and reproduction, allowed measurement of two sensitive end points: decreased egg fertilization and sex ratio (skewed toward females), both of which were significantly affected at the lowest EE2 concentration tested, 0.32 ng/L. The next most sensitive end point was demasculinization (decreased male secondary sex characteristic index) of males exposed to an EE2 concentration of 0.96 ng/L. The effects of low concentrations of EE2 (0.32 and 0.96 ng/L) were manifested in male fish (decreased male sex characteristics and reduced egg fertilization success), whereas female fish showed no changes in the gonadosomatic index. Exposure to higher EE2 concentrations negatively affected females, as shown by a reduced gonadosomatic index at 150 dph in fish exposed to > or =3.5 ng/L EE2. Although there were some end points that showed changes at 60 dph, the reproductive end points and external sex characteristics measured in mature fish at 150 dph were more sensitive, with response thresholds of EE2 ranging from 0.32 to 0.96 ng/L. The concentrations of EE2 that negatively affected fathead minnows were similar to or lower than those detected in many municipal wastewater effluents. In conclusion, life-cycle exposure of fathead minnows proved to be a very sensitive bioassay, and responses were seen at concentrations of less than 1 ng/L, which are environmentally relevant concentrations of EE2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.