Abstract

Promoting electric vehicles (EVs) is an important measure to ensure energy security, improve air quality, and mitigate global climate change. However, the emission reduction impacts of EVs in China have been widely debated and the conclusions of existing studies are still controversial. In this study, we adopted the life cycle assessment (LCA) method to evaluate the carbon dioxide (CO2) and air pollutant emissions from the stage of vehicle production, vehicle use and vehicle end-of-life. We further compared the emissions of three types of passenger vehicles in China, including internal combustion engine vehicle (ICEV), plug-in hybrid electric vehicle (PHEV), and battery electric vehicle (BEV). Compared with ICEV, BEV and PHEV were found to reduce the emissions of CO2, VOCs, and NOX, but increase the emissions of PM2.5 and SO2. These differences were primarily caused by EV’s high fuel efficiency and high fuel consumption of ICEV. Additional findings indicate that the emissions of PM2.5 and SO2 of BEV were 2.6 and 2.1 times that of ICEV, respectively; and the emissions of PM2.5 and SO2 of PHEV were 1.8 and 1.5 times that of ICEV, respectively. Moreover, we found the emissions of PM2.5 and SO2 of EV will be higher than that of ICEV in high renewable energy scenario with higher biomass share if keeping the emission factor of electricity constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call