Abstract

Abstract In recent years, there is a strong emphasis on embodied energy due to its significance in all buildings life cycle stages. Previous studies on embodied energy showed that building embodied energy ranges between 2% and 80% of total building energy. Singapore's Nanyang Technological University (NTU) has committed to achieve the vision of being the world greenest campus through various green initiatives. These include technological implementations on campus buildings to reduce its operational energy intensity. With improvement in operational energy intensity, the share of embodied energy increases. This study focused on the life cycle energy assessment of NTU's 22 academic buildings, making NTU the first university campus in Singapore and the Asia Pacific to conduct a large-scale life cycle energy investigation. Based on an assumed lifetime of 40 years, the average embodied energy for material, construction, transportation, maintenance and end of life stages constitute 1179.5 kWh/m2 or 29.5 kWh/m2 per year. The average operational energy is 11033.4 kWh/m2 or 276 kWh/m2 per year. Operational energy constitutes 90% of total life cycle energy while the remaining 10% is from embodied energy. The results provide suggestions to building professionals on ways to reduce the share of building embodied energy. These suggestions include material reusing and recycling, importing building materials from neighbouring countries and use of low carbon building materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call