Abstract

In recent years, many novel smart technologies have been proposed to reduce the energy consumption and greenhouse gas (GHG) emissions attributed to the building sector. One such application of these technologies is the reduction of the Heating, Ventilation and Air Conditioning (HVAC) energy needs and GHG emissions using smart control systems. The environmental benefits of smart control systems during building operation have been explored in many studies, however, their embodied effects, associated with the extraction of raw materials, manufacturing and replacement are often overlooked. Accordingly, this study quantifies the life cycle energy needs and GHG emissions of a smart HVAC control system and assesses its potential for reducing the HVAC operational energy and GHG emissions in an Australian office building. A comparative assessment is performed, considering a traditional HVAC control system and an equivalent smart HVAC control system. The components of both the traditional and smart control systems are specified based on the characteristics of these systems as well as the layout of the serviced spaces in the reference building. The embodied energy and GHG emissions of both the traditional and smart control systems are quantified through a hybrid life cycle inventory (LCI) approach. To evaluate the effects of these control systems on the building HVAC operational energy, a building energy simulation is performed by applying the control logics of both systems. The results show that energy and GHG emissions savings in the HVAC operational offset the additional energy needs and GHG emissions of deploying the smart HVAC control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call