Abstract

This paper examines the impact on the life cycle greenhouse gas (GHG) emissions reduction when fossil-fueled ICE gasoline, diesel and natural gas vehicles, hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are banned in a step-by-step manner from 2035. We examine the impact of vehicle bans on life cycle GHG emissions and on the marginal cost (MC) of emissions reduction using four different scenarios defined by hydrogen production method, renewable energy share, and infrastructure development for refueling stations. The vehicle penetration and the fuel demand are determined by a consumer choice model characterized by a multinomial logit algorithm. Our analysis found that vehicle bans significantly promote battery electric vehicles (BEVs) for mini-sized vehicles and hydrogen fuel cell vehicles (FCVs) for light and heavy-duty vehicles. A vehicle ban that excludes BEVs and FCVs from 2035 under an enhanced infrastructure plan can reduce the life cycle GHG emissions as much as 438 million tonnes by 2060 compared to the 2017 level. The MC of the life cycle GHG mitigation decreases continuously and reaches as low as $482 per tonne CO2eq in 2060. However, if PHEVs are excluded from the ban, the life cycle GHG emissions are reduced more by 88 Mt-CO2eq in 2060 at a lower MC of $122 per tonne CO2eq. This is due to decreases in GHG emissions from VP where the replacement of PHEVs for BEVs and FCVs reduces the production of batteries and fuel cells. The main structure of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call