Abstract
Abstract We identified precipitating systems from May to August 2016 using data from the Global Precipitation Measurement mission Dual-frequency Precipitation Radar instrument. Then, using this set of cases, Himawari-8 10.4-μm brightness temperature data from before and after each precipitation event were used to identify three life stages of clouds: a developing stage, a mature stage, and a dissipating stage. Using statistical analysis and two case studies, we show that the precipitating systems at different life stages of the clouds have different systematic properties, including the area of precipitation, the convective ratio, the rain-top height, and the brightness temperature. The developing systems had the largest convective ratio, whereas the dissipating systems had the largest area of precipitation. The life stage of the cloud also influenced the vertical structure of the precipitation. The microphysical processes within each stage were unique, leading to various properties of the droplets in precipitation. The developing systems had large, but sparse, droplets; the mature systems had large and dense droplets; and the dissipating systems had small and sparse droplets. Our results suggest that the different properties of precipitating systems in each life cycle stage of clouds are linked to the cloud water content and the upward motion of air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.