Abstract

Abstract The goal of this project is to determine the reductions in greenhouse gas (GHG) emissions associated with the recycling of aerospace alloys. This study is based on an aerospace recycler that sells much of its high-performance alloy scrap directly to remelters that produce these alloys for aircraft engine component manufacturers, with significant potential environmental benefits arising from the substitution of recycled materials for virgin materials. The project team explored existing sources of environmental data for all of the metals that make up aerospace alloys, and ten common alloys were chosen as case studies. Certain metal elements, including niobium, rhenium, tungsten, and zirconium, did not have any robust environmental impact information, and for these GHG emissions factors from primary production were modeled using a variety of statistical and industrial data sources. The project team then investigated the forms of metal inputs into alloying operations to ensure that the model reflects actual industrial practices and that the alloy scrap substitutes for virgin materials. GHG emissions are also incurred through alloy scrap collection and processing, and so a carbon footprint was performed for alloy recycling operations in order to determine these burdens. Overall, the recycling of aerospace alloys for reuse in the aerospace industry represents significant reductions in GHG emissions for each of the ten alloys considered, while emissions associated with collection and processing are

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.