Abstract

Goal and Scope. This study attempts to estimate the environmental performance of Polyhydroxyalkanoates (PHA), from agricultural production through the PHA fermentation and recovery process – 'cradle to gate'. Two types of PHA production systems are investigated: corn grain based PHA and corn grain and corn stover based PHA. Methods. Corn cultivation data are taken from 14 counties in the Corn Belt states of the United States – Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin. The environmental burdens associated with the corn wet milling process, in which dextrose, corn oil, corn gluten meal and corn gluten feed are produced, are allocated to dextrose and its coproducts by the system expansion approach. Greenhouse gases include carbon taken up by soil, nitrous oxide (N2O) released from soil during corn cultivation, carbon contents in biobased products as well as carbon dioxide, methane and nitrous oxide released from industrial processing. The soil carbon and nitrogen dynamics in corn cultivation are predicted by an agro–ecosystem model, the DAYCENT model. The environmental performance of the PHA production system is compared to that of a conventional polymer fulfilling an equivalent function. The environmental performance is addressed as nonrenewable energy and selected potential environmental impacts including global warming, photochemical smog, acidification, and eutrophication. The characterization factors are adapted from the TRACI model (Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts) developed by the United States Environmental Protection Agency. Results and Discussion. Global warming associated with corn grain based PHA is 1.6–4.1 kg-CO 2 eq. kg –1 . The primary contributing process to most environmental impacts except for photochemical smog and eutrophication is the PHA fermentation and recovery process. For photochemical smog and eutrophication, the primary contributing process is corn cultivation due to nitrogen related burdens from soil. The trend of PHA fermentation development shows that the PHA fermentation technology is still immature and continues to improve, thereby also decreasing the environmental impacts. PHA produced in an integrated system, in which corn stover is harvested and used as raw material for PHA along with corn grain, offers global warming credits (negative greenhouse gas emissions), ranging from –0.28 to –1.9 kg-CO2 eq. kg–1, depending on the PHA fermentation technologies employed and significantly reduces the environmental impacts compared to corn based PHA. The significant reductions from the integrated system are due to 1) less environmental impacts in corn cultivation and wet milling, and 2) exporting surplus energy from lignin–rich residues in corn stover process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call