Abstract

An exploratory work involving waste printed wiring board (WPWB)-derived inexpensive silver oxide (Ag2O)-grafted silica-alumina composite photocatalyst (SAA) using quartz halogen and UVA irradiations (QHUV) (wavelength: 315 nm-1000 nm) has been revealed. The efficacy of the novel SAA photocatalyst was assessed in the synthesis of fermentable sugar (FS) by photo-hydrolysis of pure crystalline cellulose (PCC) in the QHUV-assisted batch reactor (QHUVBR), and the process parameters (5% AgNO3 doping, 7.5% catalyst concentration, 20 min PH time, and 80 °C PH temperature) were optimized using Taguchi orthogonal array design. The BET analysis of the optimal SAA catalyst possessed high surface area (27.24 m2/g), high pore volume, and pore diameter (0.042 cc/g and 13.1684 nm), respectively, whereas the XRD indicated the presence of significant crystalline phases of Ag2O. EDS mapping displayed the uniform distribution of silver active sites on silica-alumina support of the optimal SAA photocatalyst. The optimized parametric conditions in QHUVBR resulted in a maximum FS yield of 77.53% which was significantly higher compared to that achieved (34.52%) in a conventionally heated batch reactor (CHBR). Besides, the energy consumption was 75% more in CHBR (600 W) in comparison with QHUVBR (150 W), making the process energy-efficient and cost-effective. The environmental sustainability could be ascertained from the life cycle assessment (LCA) study in terms of low climate change, ionizing radiation, metal depletion, human toxicity, and other potential indicator values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call