Abstract
This study describes a life cycle assessment (LCA) of a fourth generation (4G) nuclear power plant. A high temperature helium cooled reactor and gas turbine technology with modular helium reactor (GT-MHR) is used in this study as an example. This is currently one the safest design of a nuclear power plant. The study also takes into account impact of accidents and incidents (AI) which happened around the world at nuclear power generation facilities. The adopted method for the study is a hybrid LCA analysis. The analysis of each phase of the life cycle was done on the basis of process chain analysis (PCA). Where detailed data were not available, the Input/Output (I/O) databases was employed. The obtained results show that greenhouse gases (GHG) emissions and energy intensity per unit of electricity production are relatively low. In fact, these are even lower than emissions from a number of renewable energy sources. The results show considerably different greenhouse gases (GHG) emissions and energy intensity per unit of electricity production when effects of AI are taken into account.
Highlights
The constructive utilisation of energy is of paramount importance for the enhancement of society’s standard of living
The results show considerably different greenhouse gases (GHG) emissions and energy intensity per unit of electricity production when effects of AI are taken into account
The amount of major required materials and produced waste for the whole life cycle of the gas turbine technology with modular helium reactor (GT-MHR) power plant under consideration is presented in Table 4. (The amount of HLW presented is based on the once throughout cycle without reprocessing)
Summary
The constructive utilisation of energy is of paramount importance for the enhancement of society’s standard of living. The global demand for energy is growing even faster than the population. The escalating demand from developing countries will further exacerbate this situation. The current energy utilisation worldwide is about 14 TWh (1TWh = 1012 W·hour). By the end of the 21st century it may reach 50 TWh [1]. Approximately 80% of the world’s energy comes from fossil fuels [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.