Abstract
Agricultural production and further processing to food and drink have large impacts on the environment. However, there are still few examples of LCA studies on beverages such as whisky. This paper presents a life cycle assessment of Swedish single malt whisky and different environmental improvements of the production chain are discussed. The functional unit is one bottle (70 cl) of whisky and results are obtained for global warming potential (GWP), Acidification Potential (AP), Eutrophication potential (EP) and primary energy (PE). The contribution to GWP is dominated by CO2 emissions from transport of stillage. When avoided emissions from use of biogas are included, the net result is 2.1 tonnes CO2-eq. Acidification is mainly due to emissions of SO2 from bottle production, transport and barley cultivation which ends up to 14.6 kg SO2-eq. Eutrophication results are totally dominated by barley cultivation, in total 8.6 kg PO43−. The total use of primary energy is 53.5 MJ/FU with a 50/50 distribution in renewable and non-renewable. Non-renewables emanate from fossil fuels used for transports and in glass production, whereas renewables are mostly used for heating in the distillery. Improvement analysis of transports included; (1) decreasing need of transport, (2) change of fuel and (3) change of transport mode. Decreasing transport of stillage is an efficient measure to reduce GWP and use of non-renewable energy. Substituting diesel with biodiesel for all road transports is an even more efficient measure for these categories, but increases other environmental impact. For all impact categories except use of renewable energy a scenario combining all improvements is the most efficient measure to reduce environmental impact. The results can be used by the manufacturer, but an improved and expanded LCA on product level can be used for a more specific eco-labelling of the different whisky editions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.