Abstract

This paper aims to carry out an integrated Life Cycle Assessment (LCA) to evaluate the environmental performance of a novel thermochemical-biochemical biomass-to-liquid pathway for sustainable aviation and maritime biofuel production. Five scenarios are defined, consideringdifferent types of biomass feedstock and biorefinery locations, in different geographically dispersed European countries. The results indicate that the replacement of conventional aviation and maritime fuels with sustainable biofuels could reduce Greenhouse Gases (GHG) by 60–86%, based on feedstock type. When the renewable share in the electricity mix reaches 100% (in 2050), the GHG emissions will experience a great decrease (26% − 68%), compared to 2022 levels. The non-renewable energy consumption will also decrease (by 56% − 83%), with results strongly affected by the electricity mix of the European country considered. This study demonstrates that the deployment of biomass-to-jet/marine fuel pathways could favor the industrial adoption of circular economy strategies for transport biofuels production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call