Abstract
Liquid hydrogen has advantages in terms of energy density, refueling speed, driving range and emission performance compared to electric and gasoline in road vehicle applications. However, the disadvantage is that high energy losses occur during production and utilization. Therefore, it is necessary to consider the energy consumption and emissions of different hydrogen production options and to choose the best development option among the various pathways. In this study, a fuel life cycle analysis model was constructed for six hydrogen production pathways and two comparison pathways from the Chinese reality by using the assessment methodology of life cycle assessment (LCA). The life cycle environmental impacts of these pathways were accounted by the GREET software, which yielded the energy consumption, greenhouse gas and pollutant emissions at each phase of these fuel pathways. An evaluation of the environmental impacts of each of these pathways was also completed by introducing the Environmental Toxicity Impact Evaluation (ETIE) methodology. The results showed that natural gas (production plant and refueling station) and solar photovoltaic pathway could effectively reduce energy consumption. In the future, it will be necessary to optimize the technical structure of hydrogen production and storage to accelerate the achievement of energy savings and emission reductions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.