Abstract

Abstract Global warming being increasingly discussed, solutions for reducing emission greenhouse gases become more important in all industry sectors. The total energy consumed in the construction sector contribute up to 1/3 from all greenhouse gases emissions. Large part of it comes from the cement production – 5 % of the total global emissions. The foam concrete is lightweight concrete with good thermal properties and ability to reduce CO2 emissions by reducing the use of cement due to its low density. The aim of this study is to determine impact on the environment with the use of Life Cycle Assessment (LCA) with focus on Global Warming Potential (GWP) for two different compressive strength foam concrete mixtures produced in Latvia by unique intensive mixing technology – turbulence with cavitation effect. Afterwards, the selected foam concrete mixtures are compared with alternative materials with similar compressive strength – aerated concrete and hollow ceramic blocks. The foam concrete mixture having 12.5 MPa compressive strength showed higher CO2 emissions than hallow ceramic block. The majority of CO2 emissions comes from the Portland cement, which is a key element in its composition. On the other hand, the foam concrete mixture having 2.4 MPa compressive strength showed higher CO2 emissions than aerated concrete block. The majority of CO2 emissions are due to foam glass granules, which is the main element contributing to the increased insulation properties of the material. Comparison of each foam concrete with analogue building material by compressive strength shows that the chosen foam concrete mixtures produce greater GWP than alternative materials. This research allows to identify the environmental impacts of different foam concrete mixture components and to improve these mixtures to achieve similar properties with less impact, for example, by replacing foam glass granules with granules made from recycled glass or replacing cement with flay ash, silica fume or recycled glass powder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.