Abstract

Identifying decarbonization strategies at the district level is increasingly necessary to align the development of urban projects with European climate neutrality objectives. It is well known that district heating and cooling networks are an attractive energy system solution because they permit the integration of renewable energies and local excess of hot or cold sources. The detailed design and optimization of network infrastructures are essential to achieve the full potential of this energy system. The authors conducted an attributional life cycle assessment to compare the environmental profile of five distribution network infrastructures (i.e., pipes, heat carrier fluid, trenches, heat exchangers, valves, and water pumps) based on a study case in Marseille, France. The work aims to put into perspective the environmental profile of subsystems comprising a district heating infrastructure, and compare pipe typologies that can be used to guide decision-making in eco-design processing. Rigid and flexible piping systems were compared separately. The results show that the main impact source is the pipe subsystem, followed by the trench works for most impact categories. The authors underlined the importance of pipe typology choice, which can reduce emissions by up to 80% and 77% for rigid and flexible systems, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call