Abstract
Additive manufacturing (AM) of composite materials is promising to create customizable products with enhanced properties, utilizing materials like carbon fibers (CFs). To increase their circularity, composite recycling has been proposed to re-introduce the recovered components in AM. A careful evaluation of recycling is necessary, considering the sustainability and functionality (i.e., mechanical properties) of the recovered components. Thus, Life Cycle Assessment (LCA) is applied to estimate the environmental impacts of AM via Fused Filament Fabrication (FFF), using virgin or recycled CFs via solvolysis at a laboratory scale. This study aims to provide a detailed Life Cycle Inventory (LCI) of FFF and evaluate the sustainability of using recycled CFs in AM. For both virgin CF manufacturing and CF recycling, electricity consumption was the main contributor to environmental impacts. CF recovery via solvolysis resulted in lower impacts across most impact categories compared to AM with virgin CFs. Different scenarios were examined to account for the mechanical properties of recycled CFs. AM with 75% recycled CFs, compared to 100% virgin CFs undergoing landfilling, resulted in over 22% reduction in climate change potential, even after a 50% loss of recycled CF functionality. Overall, this study offers insights into the LCI of FFF and shows that CF recycling from composites is worth pursuing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.