Abstract

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results. To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations. Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly. The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call