Abstract

Concrete industry is the main contributor of CO2 emission, and abundant studies were done for evaluating life cycle CO2 during production stage, construction stage, and use stage. The uptake of CO2 due to carbonation in service life is not detailed considered. Furthermore, the uptake of CO2 in demolition stage and the influences of structural element types on CO2 uptake performance are also not detailed considered. To overcome the weak points of current study, this paper proposed a numerical procedure about life cycle assessment of CO2 emission of concrete considering carbonation and structural element types. The CO2 emission and uptake in production stage, construction stage, use stage, and demolition stage are calculated. The influences of structural element types, shapes, and sizes on CO2 uptake performance are clarified. For concrete structures with different structural types, such as frame structures and shear-wall structures, the relative ratios for different structural element are different, hence the CO2 uptake ability are also different.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call