Abstract
Constantly rising energy demands, finite fossil fuel reserves and deteriorating environmental conditions have invoked worldwide interest to explore the sustainable sources of renewable biofuels. Locally adapted photosynthetic oleaginous microalgae with rapid growth on variable temperatures could be an ideal way for bioremediating the wastewater (WW) while producing the feedstock for biodiesel. To test this notion, an unknown strain was isolated from a sewage fed lake (Neela-Hauz). It was discerned as Chlorella sorokiniana-I using the 16S rDNA and 18S rDNA barcodes. The culture conditions such as pH, illumination, different temperature ranges and growth medium were cohesively optimized prior to the assessment of C. sorokiniana-I's efficacy to remediate the WWand biodiesel production. The strain has thrived well up to 40°C when continuously grown for 15 days. The highest lipid accumulation and biomass productivity were recorded in 100% WW. Fatty acid methyl ester (FAME) content was observed to be more than twice in WW (47%), compared to control synthetic media, TAP (20%) and BG11 (10%), which indicate the importance of this new isolate for producing economically viable biodiesel. Moreover, it is highly efficient in removing the total nitrogen (77%), total phosphorous (81%), iron (67%) and calcium (42%) from the WW. The quality of WW was considerably improved by reducing the overall chemical oxygen demand (48%), biological oxygen demand (47%) and alkalinity (15%). Thus, C. sorokiniana-I could be an ideal alga for the tropical countries in the remediation of WW while producing feedstock for biodiesel in a cost-effective manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.