Abstract

This work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated to the obtainment of three glucosyl derivatives of genistein. Genistein is known to possess the ability in vitro to contribute to control signaling of some molecules like Angiopoietin-2 that has a key role in angiogenesis and fibrosis from which Hepatocellular cancer can arise. Therefore, a fine tuning of genistein uptake and bioavailability (e.g., through glycosylation) may provide innovative anti-angiogenic therapies with benefits for cancer chemoprevention and treatment.The production of pharmaceutical quality genistein, from which the derivatives are obtained, was modelled considering a recently optimized published procedure. The preparation of 7-O-(β-D-glucosyl)genistein (or genistin) was experimentally conducted by exploiting a two-step synthetic protocol. During the work-up procedure, two further derivatives were isolated.In order to also comprise the potential human health benefits of the synthesized compounds, this work also proposes for the first time a potential damage assessment factor for genistein and its derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.