Abstract

The environmental impact of Chinese cathode copper production was identified and quantified in the context of pyrometallurgy ical and hydrometallurgical method by life cycle approach. Combined with the situation of copper resources in China, the copper ores mining, mineral processing, transportation and smelting sector, were analyzed in detail. The normalization results shows that abiotic depletion is the largest environmental impact in both Pyro-and hydro-metallurgical methods, which were 28.4 kg Sb eq and 32.0 kg Sb eq, respectively. Electrolytic refining is the key process in hydrometallurgical life cycle environmental burden (50.21%), and the mining process contributed the largest environmental impact (17.94%) in pyrometallurgical process. In addition, the total environmental burden of pyrometallurgical process is 1.15 times of hydrometallurgical process. Pyrometallurgical methods has many environmental impact category which were much higher than hydrometallurgical because of the more use of fossil fuels in smelting process. Based on the life cycle assessment results, the key factors to reduce the overall environmental impact for China’s cathode copper production include optimizing the efficiency of copper resource, and clean energy sources for electricity production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call