Abstract
Date palm trees play a crucial role in the provision of essential nutrition by producing date fruits and are widely cultivated in Qatar. The processing of date fruits generates substantial quantities of carbon-rich date stone possessing remarkable energy potential. This inherent energy can be harnessed by applying pyrolysis techniques, which facilitate the production of many products with commercial value. Despite being a novice process, microwave (MW) pyrolysis has emerged as a promising avenue for converting biomass waste into eco-friendly biofuels. Nonetheless, the adoption of this new approach necessitates a comprehensive exploration of its ecological implications, warranting a meticulous life-cycle analysis (LCA) to ascertain its environmental footprint. As a result, using GaBi software, this study compares the life-cycle environmental impact of conventional and microwave-aided pyrolysis processes of date stone waste. The study also assesses the techno-economic analysis of the two processes. The physical and thermal analyses of the date stone waste indicated that the biomass is a high-energy source (Net calorific value-15.6 MJ/kg). While the life-cycle assessment indicated that MW pyrolysis has a greater implication on climate change (14.94 % more), ozone depletion (14.29 % more), ionizing radiation (14.36 % more), and photochemical ozone production (14.44 % more) than conventional pyrolysis. This demonstrates that conventional pyrolysis is less harmful to the environment than MW pyrolysis. The techno-economic analysis infers that conventional pyrolysis mode is superior to MW pyrolysis for the valorisation of date stone waste in terms of profitability, financial stability, and overall success.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.