Abstract

The steel industry in China, the world’s largest, contributes to about 15% of the nation’s total carbon emissions. Instead of direct combustion, the technology of converting off-gas from the steel industry into liquid fuels not only enhances the added value of this byproduct but also helps alleviate carbon emissions. This study, for the first time, integrates the specific circumstances of China to evaluate the carbon emissions of Ethanol to Jet (ETJ) and Fischer–Tropsch to Jet (FTJ) fuel technologies utilizing Basic Oxygen Furnace Gas (BOFG) and Coke Oven Gas (COG) as feedstocks. Six cases were examined using Aspen Plus (V11) for mass and energy balance: Case 1: BOFG/ETJ, Case 2: BOFG/FTJ, Case 3: COG/ETJ, Case 4: COG/FTJ, Case 5: (COG + BOFG)/ETJ, and Case 6: (COG + BOFG)/FTJ. The analysis underscores that the FTJ pathway exhibits superior carbon reduction efficiency relative to ETJ. Compared to traditional petroleum-based aviation fuels (86.65 g CO2eq/MJ), the FTJ pathways utilizing COG or COG + BOFG as feedstocks exhibit significant advantages in greenhouse gas (GHG) emission reductions, with carbon emissions of 23.60 g CO2eq/MJ and 41.48 g CO2eq/MJ, respectively, representing reductions of 72.76% and 52.13%. Furthermore, employing uncertainty analysis based on the Monte Carlo method establishes the credibility of the findings. Finally, sensitivity analysis for parameter optimization and process improvements demonstrates the significant impact of the life cycle assessment (LCA) allocation method on computational results for exhaust gas feedstocks. Given the limited coverage of lifecycle assessments for Ethanol to Jet and Fischer–Tropsch to Jet pathways in China, this study could assist policymakers in determining the development trajectory of sustainable aviation fuel (SAF) in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call