Abstract

The development of clean energy is a crucial strategy for combating climate change. However, the widespread adoption of wind power has led to significant challenges such as wind curtailment and power restrictions. A potential solution is the abandonment of onshore wind power for hydrogen production (AOWPHP). To ensure the sustainable development of clean energy, it is essential to assess the environmental impact of the AOWPHP. This study employs a life cycle assessment (LCA) methodology to evaluate the environmental impacts of the AOWPHP using QDQ2-1 alkaline electrolyzer technology in China. Furthermore, a scenario analysis is conducted to project these environmental impacts over the next 30 years. The findings indicate the following: (1) The global warming potential (GWP) over the life cycle is 5614 kg CO2-eq, the acidification potential (AP) is 26 kg SO2-eq, the human toxicity potential (HTP) is 12 kg DCB-eq, and the photochemical ozone creation potential (POCP) is 3.77 × 10−6 kg C2H4-eq. (2) Carbon emissions during the production stage significantly contribute to the environmental impact, with steel and concrete being notably polluting materials. The POCP shows high sensitivity at 0.97%, followed by the GWP and AP. (3) The scenario analysis indicates an upward trend in environmental impacts across low-speed, baseline, and high-speed development scenarios, with impacts peaking by 2050. For instance, under the high-development scenario in 2050, the GWP for each material reaches 41,808 kg CO2-eq. To mitigate these impacts effectively, recommendations include reducing reliance on steel and concrete, developing green logistics, enhancing operational efficiency in wind farms and hydrogen production plants, and exploring new epoxy resin materials. These insights are crucial for promoting sustainable growth within the AOWPHP in China while reducing global carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.