Abstract

A novel solar building cooling heating and power (BCHP) system driven by solar energy and natural gas is proposed in this paper. The performance of the presented system is greatly dependent upon the operation strategy. The primary energy consumption (PEC) and pollutant emissions of the solar BCHP system in following the electricity loads (FEL) and following the thermal loads (FTL) operation strategies are estimated based on life cycle assessment (LCA). Furthermore, three most important energy-related environment problems and human health issues, global warming, acid precipitation and respiratory effects, are considered to assess the environmental impacts of the system. In order to evaluate the comprehensive benefits achieved by the solar BCHP system in different operation modes, grey relation theory is employed to integrate the energetic benefits with environmental performances. Finally, a numerical case of the solar BCHP system for a commercial office building in Beijing, China is applied to compare the integrated performance in the FEL operation strategy with that of the FTL operation strategy. The results indicate that the energy saving and pollutant emissions reduction potentials of the FTL operation mode are the better than that of the FEL mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call