Abstract

In recent years, a mass of scientific literature has been developed in the attempt of providing guidance to control and reduce greenhouse gas emissions and preserve the Earth’s natural resources. Several contributions showed that the life cycle assessment (LCA) is a useful methodology to evaluate the performance of a service or a good by means of a comprehensive approach, particularly, in a high energy demanding industry such as the construction sector. In this context, the present study tackles the environmental sustainability of a novel piezoresistive Smart Brick monitoring sensor, for new and existing masonry buildings. The environmental footprint of two brick prototypes is compared to that of a regular strain gauges-based monitoring setup in the frame of the ReCiPe evaluation method. Metals use can be pointed as hot spot. Results show that Smart Brick prototypes, due to their longer durability (considering 50-year’s lifespan), are associated to 50% lower damage oriented impacts compared to the traditional solution in a life cycle (LC) perspective. This result is critical towards large scale implementation of smart bricks, given that environmental impact of sensing systems is one of the major current bottlenecks that are still limiting the application potential of structural health monitoring technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.