Abstract

Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indicators were assessed, with a functional unit of 1 m3 of rainwater and municipal water delivery system for toilets and urinals in a four-story commercial building with 1000 employees. Our assessment shows that the benchmark commercial RWH system outperforms the MWS system in all categories except Ozone Depletion. Sensitivity and performance analyses revealed pump and pumping energy to be key components for most categories, which further guides LCIA tradeoff analysis with respect to energy intensities. Tradeoff analysis revealed that commercial RWH performed better than MWS in Ozone Depletion if RWH's energy intensity was less than that of MWS by at least 0.86 kWh/m3 (249% of the benchmark MWS energy usage at 0.35 kWh/m3). RWH also outperformed MWS in Metal Depletion and Freshwater Withdrawal, regardless of energy intensities, up to 5.51 kWh/m3. An auxiliary commercial RWH system with 50% MWS reduced Ozone Depletion by 19% but showed an increase in all other impacts, which were still lower than benchmark MWS system impacts. Current models are transferrable to commercial RWH installations at other locations.

Highlights

  • 5–20% of the global population is predicted to live under absolute water scarcity (

  • life cycle impact assessment (LCIA) sensitivity was addressed for (i) storage tank materials and volume, (ii) energy usage or energy intensity, (iii) water demand, (iv) water loss, (v) system service life, and (vi) an auxiliary commercial Rainwater harvesting (RWH) system augmented with municipal water supply (MWS)

  • LCIA percentage contribution analysis showed that the benchmark commercial RWH system performed better than (

Read more

Summary

Introduction

5–20% of the global population is predicted to live under absolute water scarcity (

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call