Abstract
Torrefaction, a mild pyrolysis process, is considered as an effective thermochemical biomass pre-treatment method. Torrefaction demands a significant amount of thermal energy, which is usually delivered either by combusted biomass or by fossil fuels boilers. This study aims to investigate the environmental impact of the torrefaction process through the application of Life Cycle Assessment (LCA). In terms of this study olive husk, a biomass source widely used in the Mediterranean basin, was considered. Different scenarios were developed and examined regarding the means of heat production for the drying and torrefaction phases as well as the transportation of raw material. The alternative scenarios and their environmental impact were evaluated using GaBi software and the CML 2001 methodology. The obtained results indicated the potential improvement of torrefaction processes when renewable energy sources were employed in an effort to mitigate the environmental footprint of biomass thermal treatment method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.