Abstract

Wastewater treatment plants (WWTPs) with anaerobic digestion of biosolids produce an ammonia-rich sidestream out of which nitrogen can be recovered through air stripping. Recovered ammonia can be used to produce ammonium sulfate (AS) for agricultural use, enabling the circular return of nitrogen as fertilizer to the food system. We investigate the cost and life cycle environmental impact of recovering ammonia from the sidestream of WWTPs for conversion to AS and compare it to AS production from the Haber Bosch process. We perform life cycle assessment (LCA) to investigate the environmental impact of AS fertilizer production by air-stripping ammonia from WWTP sidestreams at varying sidestream nitrogen concentrations. Techno-economic analysis (TEA) is performed to assess the break-even selling price of sidestream AS production at a WWTP in the City of Philadelphia. Greenhouse gas emissions for air-stripping technology range between 0.2 and 0.5 kg CO2e/kg AS, about six times lower than the hydrocarbon-based Haber-Bosch process, estimated at 2.5 kg CO2e/kg AS. Further reduction of greenhouse gas emissions is feasible by replacing fossil-based energy use in air-stripping process (82–98 % of net energy demand) with renewable sources. Also, a significant reduction in mineral depletion and improvement in human and ecosystem health are observed for the air-stripping approach. Furthermore, the break-even selling price for installing sidestream-based AS production at the Philadelphia's WWTP, considering capital and operating costs, is estimated at $0.046/kg AS (100 %), which is 92 % lower than the 2014 estimate of AS's average selling price at farms in the United States. We conclude that even with varying ammonia concentrations and high sidestream volume, air-stripping technology offers an environmentally and economically favorable option for implementing nitrogen recovery and simultaneous production of AS at WWTPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.