Abstract

AbstractHigh-resolution analyses and MesoWest surface observations are used to examine the life cycle and mesoscale frontal structure of the “Tax Day Storm,” an intermountain cyclone that produced the second lowest sea level pressure observed in Utah during the instrumented period and the strongest cold frontal passage at the Salt Lake City International Airport in the past 25 years. A key mesoscale surface feature contributing to the cyclone’s evolution is a confluence zone that extends downstream from the Sierra Nevada across the Great Basin. Strong contraction (i.e., deformation and convergence) within this Great Basin confluence zone (GBCZ) forms an airstream boundary that is initially nonfrontal but becomes the locus for surface frontogenesis as it collects and concentrates baroclinicity from the northern Great Basin, including that accompanying an approaching baroclinic trough. Evaporative and sublimational cooling from postfrontal precipitation, as well as cross-front contrasts in surface sensible heating, also play an important role, accounting for up to 40% of cross-front baroclinicity. As an upper-level cyclonic potential vorticity anomaly and quasigeostrophic forcing for ascent move over the Great Basin, cyclone development occurs along the GBCZ and developing cold front rather than within the Sierra Nevada lee trough, as might be inferred from classic models of lee cyclogenesis. Front–mountain interactions ultimately produce a very complex frontal evolution over the basin-and-range topography of northern Utah.The analysis further establishes the role of the GBCZ in intermountain frontogenesis and cyclone evolution. Recognition of this role is essential for improving the analysis and prediction of sensible weather changes produced by cold fronts and cyclones over the Intermountain West.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.