Abstract

This study presents a life-cycle analysis using energy conversion characteristics as an evaluation index to assess the feasibility of this production method. The results indicate that for a system processing 1000 kg/h of wheat straw, the addition of 12000 kg/h of 2 wt% H2SO4 and 120 kg/h of CH3COONa yields 340,000 L/h of H2 and 348.6 kW of electricity. The energy conversion efficiency from the feedstock to the product is 21.4 %, while the efficiency from the hydrolysate to the product is 62.2 %. The total CO2 emission is 27.1 kg/h. Variations in the hydrolysate have the most significant impact on energy conversion efficiency. This study explores the feasibility of industrial-scale biohydrogen production via dark-photo fermentation from wheat straw and analyzes the energy characteristic indices and the sensitivity of these indices to key parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call