Abstract
AbstractLi metal is regarded as the “Holy Grail” in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high‐power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron‐donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF‐rich alloy‐doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high‐power dendrite‐free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra‐long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm−2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra‐high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g−1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite‐free Li metal anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.