Abstract

Non-perturbative constraints on many body physics--such as the famous Lieb-Schultz-Mattis theorem--are valuable tools for studying strongly correlated systems. To this end, we present a number of non-perturbative results that constrain the low-energy physics of systems having conserved dipole moments. We find that for these systems, a unique translationally invariant gapped ground state is only possible if the polarization of the system is integer. Furthermore, if a lattice system also has $U(1)$ subsystem charge conservation symmetry, a unique gapped ground state is only possible if the particle filling along these subsystems is integer. We also apply these methods to spin systems, and determine criteria for the existence of a new type of magnetic response plateau in the presence of a non-uniform magnetic field. Finally, we formulate a version of Luttinger's theorem for 1D systems consisting of dipoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call