Abstract

We ask whether a local Hamiltonian with a featureless (fully gapped and nondegenerate) ground state could exist in certain quantum spin systems. We address this question by mapping the vicinity of certain quantum critical point (or gapless phase) of the $d-$dimensional spin system under study to the boundary of a $(d+1)-$dimensional bulk state, and the lattice symmetry of the spin system acts as an on-site symmetry in the field theory that describes both the selected critical point of the spin system, and the corresponding boundary state of the $(d+1)-$dimensional bulk. If the symmetry action of the field theory is nonanomalous, i.e. the corresponding bulk state is a trivial state instead of a bosonic symmetry protected topological (SPT) state, then a featureless ground state of the spin system is allowed; if the corresponding bulk state is indeed a nontrivial SPT state, then it likely excludes the existence of a featureless ground state of the spin system. From this perspective we identify the spin systems with SU($N$) and SO($N$) symmetries on one, two and three dimensional lattices that permit a featureless ground state. We also verify our conclusions by other methods, including an explicit construction of these featureless spin states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.