Abstract
The Lieb-Robinson bound shows the existence of a maximum speed of signal propagation in discrete quantum mechanical systems with local interactions. This generalizes the concept of relativistic causality beyond field theory, and provides a powerful tool in theoretical condensed matter physics and quantum information science. Here, we extend the scope of this seminal result by considering general markovian quantum evolution, where we prove that an equivalent bound holds. In addition, we use the generalized bound to demonstrate that correlations in the stationary state of a Markov process decay on a length scale set by the Lieb-Robinson velocity and the system's relaxation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.