Abstract

A variety of dynamics in nature and society can be approximately treated as a driven and damped parametric oscillator. An intensive investigation of this time-dependent model from an algebraic point of view provides a consistent method to resolve the classical dynamics and the quantum evolution in order to understand the time-dependent phenomena that occur not only in the macroscopic classical scale for the synchronized behaviors but also in the microscopic quantum scale for a coherent state evolution. By using a Floquet U-transformation on a general time-dependent quadratic Hamiltonian, we exactly solve the dynamic behaviors of a driven and damped parametric oscillator to obtain the optimal solutions by means of invariant parameters of Ks to combine with Lewis–Riesenfeld invariant method. This approach can discriminate the external dynamics from the internal evolution of a wave packet by producing independent parametric equations that dramatically facilitate the parametric control on the quantum state evolution in a dissipative system. In order to show the advantages of this method, several time-dependent models proposed in the quantum control field are analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.