Abstract

AbstractOne of the main theoretical challenges in quantum computing is the design of explicit schemes that enable one to effectively factorize a given final unitary operator into a product of basic unitary operators. As this is equivalent to a constructive controllability task on a Lie group of special unitary operators, one faces interesting classes of bilinear optimal control problems for which efficient numerical solution algorithms are sought for. In this paper we give a review on recent Lie‐theoretical developments in finite‐dimensional quantum control that play a key role for solving such factorization problems on a compact Lie group. After a brief introduction to basic terms and concepts from quantum mechanics, we address the fundamental control theoretic issues for bilinear control systems and survey standard techniques fromLie theory relevant for quantum control. Questions of controllability, accessibility and time optimal control of spin systems are in the center of our interest. Some remarks on computational aspects are included as well. The idea is to enable the potential reader to understand the problems in clear mathematical terms, to assess the current state of the art and get an overview on recent developments in quantum control‐an emerging interdisciplinary field between physics, control and computation. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.