Abstract

The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert—Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.