Abstract
By applying the two efficient mathematical methods particularly with regard to the classical Lie symmetry approach and generalized exponential rational function method, numerous exact solutions are constructed for a (2 + 1)-dimensional Bogoyavlenskii equation, which describes the interaction of Riemann wave propagation along the spatial axes. Moreover, we obtain the infinitesimals, all the possible vector fields, optimal system, and Lie symmetry reductions. The governing Bogoyavlenskii equation is converted into various nonlinear ordinary differential equations through two stages of Lie symmetry reductions. Accordingly, abundant exact closed-form solutions are obtained explicitly in terms of independent arbitrary functions, rational functions, trigonometric functions, and hyperbolic functions with arbitrary free parameters. The dynamical behavior of the resulting soliton solutions is presented through 3D-plots via numerical simulation. Eventually, single solitons, multi-solitons with oscillations, kink wave with breather-type solitons, and single lump-type solitons are obtained. The proposed mathematical techniques are effective, trustworthy, and reliable mathematical tools to work out new exact closed-form solutions of various types of nonlinear evolution equations in mathematical physics and engineering sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.