Abstract

We consider a general class of variable coefficient Calogero–Degasperis equations. The complete Lie group classification is performed with the aid of the appropriate equivalence group. Lie symmetries are used to derive a number of reductions by constructing the corresponding optimal lists of one-dimensional subalgebras of the Lie symmetry algebras. Furthermore, a number of non-Lie reductions are given. One of the reduced equations is the variable coefficient potential KdV equation which is studied from the point of view of Lie group analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.