Abstract
In this paper, Lie symmetry analysis method is applied to the (2+1)-dimensional time fractional Kadomtsev-Petviashvili (KP) equation with the mixed derivative of Riemann-Liouville time-fractional derivative and integer-order $x$-derivative. We obtained all the Lie symmetries admitted by the KP equation and used them to reduce the (2+1)-dimensional fractional partial differential equation with Riemann-Liouville fractional derivative to some (1+1)-dimensional fractional partial differential equations with Erd\'{e}lyi-Kober fractional derivative or Riemann-Liouville fractional derivative, thereby getting some exact solutions of the reduced equations. In addition, the new conservation theorem and the generalization of Noether operators are developed to construct the conservation laws for the equation studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Open Communications in Nonlinear Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.