Abstract
In this paper, a [Formula: see text]-dimensional variable-coefficients Calogero–Bogoyavlenskii–Schiff (vcCBS) equation is studied. The infinitesimal generators and symmetry groups are obtained by using the Lie symmetry analysis on vcCBS. The optimal system of one-dimensional subalgebras of vcCBS is computed for determining the group-invariant solutions. On this basis, the vcCBS is reduced to two-dimensional partial differential equations (PDEs) by similarity reductions. Furthermore, the reduced PDEs are solved to obtain the two-soliton interaction solution, the soliton-kink interaction solution and some other exact solutions by the [Formula: see text]-expansion method. Moreover, it is shown that vcCBS is nonlinearly self-adjoint and then its conservation laws are calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.