Abstract

We consider a class of generalized Kuznetsov–Zabolotskaya–Khokhlov (gKZK) equations and determine its equivalence group, which is then used to give a complete symmetry classification of this class. The infinite-dimensional symmetry is used to reduce such equations to (1+1)-dimensional PDEs. Special attention is paid to group-theoretical properties of a class of generalized dispersionless KP (gdKP) or Zabolotskaya–Khokhlov equations as a subclass of gKZK equations. The conditions are determined under which a gdKP equation is invariant under a Lie algebra containing the Virasoro algebra as a subalgebra. This occurs if and only if this equation is completely integrable. A similar connection is shown to hold for generalized KP equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.