Abstract

Admissible structure constants related to the dual Lie superalgebras of particular Lie superalgebra (C3+A) are found by straightforward calculations from the matrix form of super Jacobi and mixed super Jacobi identities which are obtained from adjoint representation. Then, by making use of the automorphism supergroup of the Lie superalgebra (C3+A), the Lie superbialgebra structures on the Lie superalgebra (C3+A) are obtained and classified into inequivalent 31 families. We also determine all corresponding coboundary and bi-r-matrix Lie superbialgebras. The quantum deformations associated with some Lie superbialgebras (C3+A) are obtained, together with the corresponding deformed Casimir elements. As an application of these quantum deformations, we construct a deformed integrable Hamiltonian system from the representation of the Hopf superalgebra Uλ(Cp=12,𝜖⊕A1,1)(C3+A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.