Abstract

We construct an infinite-dimensional Lie rackoid Y which hosts an integration of the standard Courant algebroid. As a set, $$Y={{\mathcal {C}}}^{\infty }([0,1],T^*M)$$ for a compact manifold M. The rackoid product is by automorphisms of the Dorfman bracket. The first part of the article is a study of the Lie rackoid Y and its tangent Leibniz algebroid, a quotient of which is the standard Courant algebroid. In the second part, we study the equivalence relation related to the quotient on the rackoid level and restrict then to an integrable Dirac structure. We show how our integrating object contains the corresponding integrating Weinstein Lie groupoid in the case where the Dirac structure is given by a Poisson structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.